748 research outputs found

    On dynamical tunneling and classical resonances

    Full text link
    This work establishes a firm relationship between classical nonlinear resonances and the phenomenon of dynamical tunneling. It is shown that the classical phase space with its hierarchy of resonance islands completely characterizes dynamical tunneling and explicit forms of the dynamical barriers can be obtained only by identifying the key resonances. Relationship between the phase space viewpoint and the quantum mechanical superexchange approach is discussed in near-integrable and mixed regular-chaotic situations. For near-integrable systems with sufficient anharmonicity the effect of multiple resonances {\it i.e.,} resonance-assisted tunneling can be incorporated approximately. It is also argued that the, presumed, relation of avoided crossings to nonlinear resonances does not have to be invoked in order to understand dynamical tunneling. For molecules with low density of states the resonance-assisted mechanism is expected to be dominant.Comment: Completely rewritten and expanded version of a previous submission physics/0410033. 14 pages and 10 figure

    Frozen Rotor Approximation in the Mixed Quantum/Classical Theory for Collisional Energy Transfer: Application to Ozone Stabilization

    Get PDF
    A frozen-rotor approximation is formulated for the mixed quantum/classical theory of collisional energy transfer and ro-vibrational energy flow [M. Ivanov and D. Babikov, J. Chem. Phys.134, 144107 (Year: 2011)]. Numerical tests are conducted to assess its efficiency and accuracy, compared to the original version of the method, where rotation of the molecule in space is treated explicitly and adiabatically. New approach is considerably faster and helps blocking the artificial ro-vibrational transitions at the pre- and post-collisional stages of the process. Although molecular orientation in space is fixed, the energy exchange between rotational, vibrational, and translational digresses of freedom still occurs, allowing to compute ro-vibrational excitation and quenching. Behavior of the energy transfer function through eight orders of magnitude range of values and in a broad range of ΔE is reproduced well. In the range of moderate −500 â©œ ΔE â©œ +500 cm−1 the approximate method is rather accurate. The absolute values of stabilization cross sections for scattering resonances trapped behind the centrifugal threshold are a factor 2-to-3 smaller (compared to the explicit-rotation approach). This performance is acceptable and similar to the well-known sudden-rotation approximation in the time-independent inelastic scattering methods

    Mode-selective vibrational-tunneling dynamics in the N=2 triad of the hydrogen-bonded (HF)2 cluster

    Get PDF
    Rovibrationally resolved spectra of the Nj=22, Ka=0←1 transition and of the Nj=23, Ka=0←0 and Ka=1←0 transitions of the hydrogen-bonded (HF)2 have been measured in the near infrared range near 1.3 Όm by cw-diode laser cavity ring-down spectroscopy in a pulsed supersonic slit jet expansion. The spectroscopic assignment and analysis provided an insight into the dynamics of these highly-excited vibrational states, in particular concerning the predissociation of the hydrogen bond and the tunneling process of the hydrogen bond switching. Together with our previously analyzed spectra of the Nj=21 and Nj=22 components, the mode-specific dynamics in all three components of this triad can now be compared. In the N=2 triad, the HF-stretching vibration is excited by two quanta with similar excitation energy, but the quanta are distributed in three different ways, which has a distinct influence on the dynamics. The observed band centers and tunneling splittings are in agreement with our recent calculations on the (HF)2 potential energy hypersurface SO-3, resolving the long-standing discussion about the symmetry ordering of polyad levels in this overtone region. The results are also discussed in relation to the general questions of non-statistical reaction dynamics of polyatomic molecules and clusters and in relation to quasi-adiabatic channel above barrier tunneling

    Two regularizations - two different models of Nambu-Jona-Lasinio

    Full text link
    Two variants of the Nambu--Jona-Lasinio model -- the model with 4-dimensional cutoff and the model with dimensionally-analytical regularization -- are systematically compared. It is shown that they are, in essence, two different models of light-quark interaction. In the mean-field approximation the distinction becomes apparent in a behavior of scalar amplitude near the threshold. For 4-dimensional cutoff the pole term can be extracted, which corresponds to sigma-meson. For dimensionally-analytical regularization the singularity of the scalar amplitude is not pole, and this singularity is quite disappeared at some value of the regularization parameter. Still more essential distinction of these models exists in the next-to-leading order of mean-field expansion. The calculations of meson contributions in the quark chiral condensate and in the dynamical quark mass demonstrate, that these contributions though their relatively smallness can destabilize the Nambu--Jona-Lasinio model with 4-dimensional cutoff. On the contrary, the Nambu--Jona-Lasinio model with dimensionally-analytical regularization is stabilized with the next-to-leading order, i.e. the value of the regularization parameter shifts to the stability region, where these contributions decrease.Comment: 14 pages; Journal version; parameter fixing procedure is modifie

    Pion damping width from SU(2) x SU(2) NJL model

    Full text link
    Within the framework of the NJL model, we investigate the modification of the pion damping width in a hot pion gas for temperatures ranging from 0 to 180 MeV. The pion is found to broaden noticeably at T > 60 MeV. Near the chiral phase transition T ~ 180 MeV, the pion width is saturated and amounts to 70 MeV. The main contribution to the width comes from pion-pion collisions. Other contributions are found negligibly small.Comment: LaTeX2e, 13 pages, 2 figure

    Chiral restoration effects on the shear viscosity of a pion gas

    Full text link
    We investigate the shear viscosity of a pion gas in relativistic kinetic theory, using the Nambu-Jona-Lasinio model to construct the pion mass and the pi-pi interaction at finite temperature. Whereas at low temperatures the scattering properties and, hence, the viscosity are in agreement with lowest-order chiral perturbation theory, we find strong medium modifications in the crossover region. Here the system is strongly coupled and the scattering lengths diverge, similarly as for ultra-cold Fermi gases at a Feshbach resonance. As a consequence, the ratio eta/s is found to be strongly reduced as compared to calculations without medium-modified masses and scattering amplitudes. However, the quantitative results are very sensitive to the details of the applied approximations.Comment: 15 pages, 12 figures; v2: extended discussions of the dressed sigma propagator and the low-temperature limit, typos corrected, accepted versio

    Modelling marine emissions and atmospheric distributions of halocarbons and dimethyl sulfide: the influence of prescribed water concentration vs. prescribed emissions

    Get PDF
    Marine-produced short-lived trace gases such as dibromomethane (CH2Br2), bromoform (CHBr3), methyliodide (CH3I) and dimethyl sulfide (DMS) significantly impact tropospheric and stratospheric chemistry. Describing their marine emissions in atmospheric chemistry models as accurately as possible is necessary to quantify their impact on ozone depletion and Earth's radiative budget. So far, marine emissions of trace gases have mainly been prescribed from emission climatologies, thus lacking the interaction between the actual state of the atmosphere and the ocean. Here we present simulations with the chemistry climate model EMAC (ECHAM5/MESSy Atmospheric Chemistry) with online calculation of emissions based on surface water concentrations, in contrast to directly prescribed emissions. Considering the actual state of the model atmosphere results in a concentration gradient consistent with model real-time conditions at the ocean surface and in the atmosphere, which determine the direction and magnitude of the computed flux. This method has a number of conceptual and practical benefits, as the modelled emission can respond consistently to changes in sea surface temperature, surface wind speed, sea ice cover and especially atmospheric mixing ratio. This online calculation could enhance, dampen or even invert the fluxes (i.e. deposition instead of emissions) of very short-lived substances (VSLS). We show that differences between prescribing emissions and prescribing concentrations (−28 % for CH2Br2 to +11 % for CHBr3) result mainly from consideration of the actual, time-varying state of the atmosphere. The absolute magnitude of the differences depends mainly on the surface ocean saturation of each particular gas. Comparison to observations from aircraft, ships and ground stations reveals that computing the air–sea flux interactively leads in most of the cases to more accurate atmospheric mixing ratios in the model compared to the computation from prescribed emissions. Calculating emissions online also enables effective testing of different air–sea transfer velocity (k) parameterizations, which was performed here for eight different parameterizations. The testing of these different k values is of special interest for DMS, as recently published parameterizations derived by direct flux measurements using eddy covariance measurements suggest decreasing k values at high wind speeds or a linear relationship with wind speed. Implementing these parameterizations reduces discrepancies in modelled DMS atmospheric mixing ratios and observations by a factor of 1.5 compared to parameterizations with a quadratic or cubic relationship to wind spee

    Effects of mesonic correlations in the QCD phase transition

    Full text link
    The finite temperature phase transition of strongly interacting matter is studied within a nonlocal chiral quark model of the NJL type coupled to a Polyakov loop. In contrast to previous investigations which were restricted to the mean-field approximation, mesonic correlations are included by evaluating the quark-antiquark ring sum. For physical pion masses, we find that the pions dominate the pressure below the phase transition, whereas above T_c the pressure is well described by the mean-field approximation result. For large pion masses, as realized in lattice simulations, the meson effects are suppressed.Comment: 11 pages, 4 figures; version accepted for publication in Yad. Fiz., text extended, 1 figure adde

    Epitaxial Lead Chalcogenides on Si for Mid-IR Detectors and Emitters Including Cavities

    Get PDF
    Lead chalcogenide (IV-VI narrow-gap semiconductor) layers on Si or BaF2(111) substrates are employed to realize two mid-infrared optoelectronic devices for the first time. A tunable resonant cavity enhanced detector is realized by employing a movable mirror. Tuning is across the 4ÎŒm to 5.5ÎŒm wavelength range, and linewidth is <0.1ÎŒm. Due to the thin (0.3ÎŒm) PbTe photodiode inside the cavity, a higher sensitivity at higher operating temperatures was achieved as compared to conventional thick photodiodes. The second device is an optically pumped vertical external-cavity surface-emitting laser with PbTe-based gain layers. It emits at ∌5ÎŒm wavelength and with output power up to 50mW pulsed, or 3mW continuous wave at 100
    • 

    corecore